FLOXCOM PROJECT WP5 36 MONTH REPORT

Polish Academy of Sciences Institute of Fundamental Technological Research

http://www.ippt.gov.pl

Laser Diagnostics of Vortical Flow

- FLOW STRUCTURE IDENTIFICATION WITH PIV AND HIGH SPEED IMAGING IN COLD FLOW COMBUSTOR MODEL
- QUANTITATIVE EVALUANTION OF THE TURBULENCE ENHANCEMENT
- INETRACTION OF THE FUEL AND COOLING JETS WITH THE FLOW

Equipment

- Full Field Measurements of cold flow:
- High Speed Camera (up to 40 500 frames per second)
- PIV Camera (resolution 1280 x 1024)
- Laser CW Ar 3W
- Double Pulse Laser Nd-YAG (2 x 30 mJ)
- Suction Pump (up to 35 dm³/s)
 - Point Measurements:
- 4 Hot Wire Sensors

CFD Modelling Using Fluent 6

3-D, uncompressible, turbulent flow
 k - ε model & Large Eddy Simulation
 882000 tetrahedral elements

Air 1 (trapezoid inlet) velocity: result
Air 2 (trapezoid inlet) velocity: result
Outflow velocity: 18 m/s (set)

Expected results

- Instantaneous velocity and vorticity
- Turbulence transport coefficients
- Flow_structure
- Mixing properties

Validation of the CFD models Optimisation of the combustor geometry

Experimental Setup

Geometry I

PIV: Velocity Magnitude – Averaged Field Geometry I

Velocity Magnitude profile Comparison of experimental and CFD results

Geometry I

Transparent Geometry II

Fluent: Vectors & Contours of Velocity Magnitude

Geometry II

Geometry III

Transparent Geometry III

Inclined side walls

EXPERIMENT CONFIGURATION

Geometry III

	Configuration		
	,,A"	,,B"	,, C "
Inlet 1	open	open	closed
	v = 9.5 m/s	v = 20 m/s	v = 0 m/s
Inlet 2	open	closed	open
	v = 10 m/s	v = 0 m/s	v = 17 m/s
Outlet	open	open	open
	v = 18 m/s	v = 18 m/s	v = 18 m/s

FLOW VISUALIZATION

Geometry III Configuration "A"

4500fps

FLOW VISUALIZATION

Geometry III Configuration "B"

4500fps

FLOW VISUALIZATION

Geometry III Configuration "C"

Selected configuration

4500fps

PIV Measured Vectors & Contours of Velocity Magnitude

Geometry III – configuration "A"

PIV Measured Vectors & Contours of Velocity Magnitude

Geometry III – configuration "B"

PIV Measured Vectors & Contours of Velocity Magnitude

Geometry III – configuration "C"

Selected configuration

Numerical model: Vectors & Contours of Velocity Magnitude Geometry III – configuration "A"

<u>Velocity</u>

Inlet 1: open Inlet 2: open Outlet: 18 m/s

Numerical model: Contours of Turbulence Intensity Geometry III – configuration "A"

Velocity

Inlet 1: open Inlet 2: open Outlet: 18 m/s Numerical model: Vectors & Contours of Velocity Magnitude Geometry III – configuration "B"

<u>Velocity</u>

Inlet 1: open Inlet 2: closed Outlet: 18 m/s

Numerical model: Contours of Turbulence Intensity Geometry III – configuration "B"

Velocity

Inlet 1: open Inlet 2: closed Outlet: 18 m/s Numerical model: Vectors & Contours of Velocity Magnitude Geometry III – configuration "C"

<u>Velocity</u>

Inlet 1: closed Inlet 2: open Outlet: 18 m/s

Selected configuration

Numerical model: Contours of Turbulence Intensity Geometry III – configuration "C"

<u>Velocity</u>

Inlet 1: closed Inlet 2: open Outlet: 18 m/s

Selected configuration

Velocity Magnitude profile Comparison of experimental and CFD results Geometry III – configuration "C"

RMS of Velocity Fluctuation profile Comparison of experimental and CFD results

Geometry III – configuration "C"

Numerical simulation: Mean fields of Velocity Vectors & Contours of Magnitude Model of turbulence: Large Eddy simulation

<u>Velocity</u>

Inlet 1: open Inlet 2: open Outlet: 18 m/s

Configuration "A"

Numerical simulation: 0.01s time steps for Vectors & Contours of Velocity Magnitude Model of turbulence: Large Eddy simulation

<u>Velocity</u>

Inlet 1: open Inlet 2: open Outlet: 18 m/s

Configuration "A"

Comparison of Numerical Simulations

k - ε model vs. Large Eddy Simulation

k - ε

Vectors and Contours and of Velocity Magnitude Configuration "A"

LES

Comparison of Numerical Simulations k - ε model vs. Large Eddy Simulation

Comparison of Velocity Magnitude Profiles

Numerical simulation:

Averaged Vectors & Contours of Velocity Magnitude

Model of turbulence: Large Eddy simulation

<u>Velocity</u>

Inlet 1: closed Inlet 2: open Outlet: 18 m/s

Configuration "C"

Numerical simulation:

0.01s time steps for Vectors & Contours of Velocity Magnitude

Model of turbulence: Large Eddy simulation

<u>Velocity</u>

Inlet 1: closed Inlet 2: open Outlet: 18 m/s

Configuration "C"

Velocity Magnitude profile Comparison of Thermoanemometry measurements for configuration "A" & "B" & "C" of Geometry III

Geometry IV – cylindrical top/bottom cross sections

Geometry IV – cylindrical top/bottom

Numerical simulation: Vectors & Contours of Velocity Magnitude Geometry IV

<u>Velocity</u>

Inlet 1: open Inlet 2: open Outlet: 18 m/s

Numerical simulation: Contours of Turbulence Intensity Geometry IV

<u>Velocity</u>

Inlet 1: open Inlet 2: open Outlet: 18 m/s

Comparison of Velocity Magnitude Profiles

Comparison of Turbulence Intensity Profiles

Selected cross – sections

cross – section Z1

Geometry III

Geometry IV

cross – section Z1

Geometry III

Geometry IV

Contours of Turbulence Intensity

cross – section Z2

Geometry III

Geometry IV

cross – section Z2

Geometry III

Geometry IV

Contours of Turbulence Intensity

cross – section Z3

Geometry III

Geometry IV

cross – section Z3

Geometry III Geometry IV Contours of Turbulence Intensity

Numerical simulation: Vectors & Contours of Velocity Magnitude Geometry IV – with "slip" boundary condition on side walls

<u>Velocity</u>

Inlet 1: open Inlet 2: open Outlet: 18 m/s

Effect of periodic boundary conditions

Numerical simulation: Contours of Turbulence Intensity Geometry IV – with "slip" boundary condition on side walls

<u>Velocity</u>

Inlet 1: open Inlet 2: open Outlet: 18 m/s

central cross – section

Geometry IV Geometry IV – "slip"

Comparison of Velocity Magnitude Profiles

cross – section Z1

Geometry IV

Geometry IV – "slip"

cross – section Z1

Geometry IV – "slip" Contours of Turbulence Intensity

cross – section Z2

Geometry IV Geometry IV – "slip"

cross – section Z2

Geometry IV – "slip" Contours of Turbulence Intensity

cross – section Z3

Geometry IV

Geometry IV – "slip"

cross – section Z3

Geometry IV – "slip" Contours of Turbulence Intensity

Numerical simulation: Vectors & Contours of Velocity Magnitude Geometry IV Model of turbulence: Large Eddy Simulation

<u>Velocity</u>

Inlet 1: open Inlet 2: open Outlet: 18 m/s

Numerical simulation: Vectors & Contours of Velocity Magnitude Geometry IV Model of turbulence: Large Eddy Simulation

<u>Velocity</u>

Inlet 1: open Inlet 2: open Outlet: 18 m/s

k - ε model vs. Large Eddy Simulation

k - ε

LES

Comparison of Numerical Simulations for Geometry IV k - ε model vs. Large Eddy Simulation

Comparison of Velocity Magnitude Profiles

Numerical simulation: Vectors & Contours of Velocity Magnitude Geometry IV Model of turbulence: Large Eddy Simulation

<u>Velocity</u>

Inlet 1: closed Inlet 2: open Outlet: 18 m/s

Numerical simulation: Vectors & Contours of Velocity Magnitude Geometry IV Model of turbulence: Large Eddy Simulation

<u>Velocity</u>

Inlet 1: closed Inlet 2: open Outlet: 18 m/s

Turbulence enhancer

Turbulence enhancer

Flow visualization without (left) and with (right) turbulence enhancer.

Images used are acquired at 4500fps

Images from High Speed Camera analysed by Optical-Flow based PIV

PIV measured averaged vector field and velocity profile without (left) and with (right) turbulence enhancer. 500 images used are acquired at 4500fps

Images from High Speed Camera

PIV measured vector fields and velocity profiles without turbulence enhancer. 500 images acquired at 4500fps

Images from High Speed Camera

PIV measured vector fields and velocity profiles with turbulence enhancer. 500 images acquired at 2200fps

Images from High Speed Camera analysed by Optical-Flow based PIV

PIV measured velocity profiles of Vy without (left) and with (right) turbulence enhancer. 500 images used are acquired at 4500fps
Images from High Speed Camera analysed by Optical-Flow based PIV

PIV measured averaged velocity field without (left) and with (right) turbulence enhancer. 500 images used are acquired at 4500fps

Images from High Speed Camera analysed by Optical-Flow based PIV

PDF of X- velocity component

PDF of Y- velocity component

PIV measured PDF of the velocity field without and with turbulence enhancer. 500 images used are acquired at 4500fps

Images from High Speed Camera analysed by Optical-Flow based PIV

FFT filtering of PIV measured velocity fluctuations. Power Density Spectrum for Y- velocity component measured without (left) and with (right) turbulence enhancer.

500 images used are acquired at 4500 fps

Numerical simulation: Mean fields of Velocity Vectors & Contours of Magnitude Model of turbulence: Large Eddy Simulation

Configuration "A"

<u>Velocity</u>

Inlet 1: open Inlet 2: open Outlet: 21 m/s

Geometry III – with "turbulence enhancer"

Numerical simulation: 0.001s time steps for Vectors & Contours of Velocity Magnitude Model of turbulence: Large Eddy Simulation

Configuration "A"

<u>Velocity</u> Inlet 1: open Inlet 2: open Outlet: 21 m/s

Geometry III with "turbulence enhancer"

Numerical simulation: 0.001s time steps for Vectors & Contours of Velocity Magnitude Model of turbulence: Large Eddy Simulation

Numerical simulation: Mean fields of Velocity Vectors & Contours of Magnitude Model of turbulence: Large Eddy Simulation

Configuration "C"

<u>Velocity</u>

Inlet 1: closed Inlet 2: open Outlet: 20.18 m/s

Geometry III – with "turbulence enhancer"

Numerical simulation: 0.001s time steps for Vectors & Contours of Velocity Magnitude Model of turbulence: Large Eddy Ssimulation

Configuration "C"

<u>Velocity</u>

Inlet 1: closed Inlet 2: open Outlet: 20.18 m/s

Geometry III with "turbulence enhancer"

Numerical simulation: 0.001s time steps for Vectors & Contours of Velocity Magnitude Model of turbulence: Large Eddy Ssimulation

Configuration "A" without "turbulence enhancer"

Geometry IV

Configuration "A" with "turbulence enhancer" Geometry III

Configuration "C" without "turbulence enhancer"

Geometry IV

Configuration **"C"** with "turbulence enhancer" Geometry III

Numerical simulation of fuel injection

Configuration **"C"** Geometry II model: k - ε

Inlet 1: closed Inlet 2: mass flow rate: 0.01225 kg/s with temperature 293K Fuel injection: wall with 3273K Outlet: outflow (ratio 1:1 to inlet) Others walls: adiabatic walls

Simulation of fuel injection Numerical simulation: Vectors & Contours of Velocity Magnitude

Configuration "C" Geometry II

Simulation of fuel injection jet

Numerical simulation:

Vectors of Velocity Magnitude & Contours of Temperature

Configuration "C" Geometry II

Fuel injection – hot air source

Numerical simulation of fuel injection and cooling jets

Configuration **"C"** Geometry II model: k - ε

Inlet 1: closed Inlet 2: mass flow rate: 0.01225 kg/s with temperature 293K Fuel injection: wall with 3273K Cooling: mass flow rate 0.001225 kg/s (10% of Inlet), temp. 223K Outlet: outflow (ratio 1:1 to inlet) Others walls: adiabatic walls

Simulation of fuel injection and cooling jet Numerical simulation: Vectors & Contours of Velocity Magnitude

Simulation of fuel injection and cooling jet Numerical simulation: <u>Vectors of Velocity Magnitude & Contours of</u> Temperature

Fuel injection – hot air source

Cooling jet – cold air source

Deliverables

- Turbulence enhancer improves mixing properties. Observations of the flow show periodical beats of the main flow jet, which interacts with the adjacent vortices
- To identify main flow structure, a Fourier analysis of the velocity fields both in space and time is performed for long sequences of images obtained with the high speed camera.
- PIV based on High Speed Imaging shows the relationship between the jet instabilities and the mixing efficiency in the cavity centre.
- Interaction of the fuel injection and cooling jet is limited and only local variation of temperature could be observed numerically and experimentally.

FLOXCOM PROJECT WP5

http://floxcom.ippt.gov.pl

Tomasz A. Kowalewski Slawomir Blonski Tomasz Michalek